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Continuous body

We describe the behaviour of the elasto-plastic material:

Ax. Based on the existence of configurations with torsion
k− a fixed reference configuration of the body ℬ.
�(⋅, t)− the motion �, at time t, for any X ∈ ℬ

∃Kt ≡ K config. with torsion ⇐⇒ Fp− plastic distorsion and
(p)

Γ k − plastic connection with torsion

Material behaves like an hyperelastic (second order) material
in terms of macroforces.

Lattice defects are treated as differential geometrical concepts.

Micro stress and stress momentum obey balance laws and
satisfy the viscoplastic type constitutive equations, in Kt .

Evolution equations for Kt− have to be given.

Energetic arguments: virtual power principle =⇒ macro
and micro balance Eqns.
energy imbalance =⇒ thermomechanics restrictions

Sanda Cleja-Ţigoiu Continuum model of lattice defects in finite elasto-plasticity



Introduction
Second order deformations

Lattice defects
Balance Equations

Thermomechanics restrictions

Continuous body

We describe the behaviour of the elasto-plastic material:

Ax. Based on the existence of configurations with torsion
k− a fixed reference configuration of the body ℬ.
�(⋅, t)− the motion �, at time t, for any X ∈ ℬ

∃Kt ≡ K config. with torsion ⇐⇒ Fp− plastic distorsion and
(p)

Γ k − plastic connection with torsion

Material behaves like an hyperelastic (second order) material
in terms of macroforces.

Lattice defects are treated as differential geometrical concepts.

Micro stress and stress momentum obey balance laws and
satisfy the viscoplastic type constitutive equations, in Kt .

Evolution equations for Kt− have to be given.

Energetic arguments: virtual power principle =⇒ macro
and micro balance Eqns.
energy imbalance =⇒ thermomechanics restrictions
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Continuous body

We are not dealing with curved space but with curved geometry in
flat space , de Wit (1981).

1 The nature of the geometry is determined by the linear
connection Γ, fixed by its coefficients

the curvature tensor ℛ
the Cartan torsion or torsion tensor S;

2 metric tensor C, to measure the distance;
3 non-metricity measure Q, in terms of Γ and C.

Geometry for which ℛ,S,Q are non-vanishing is non-metric,
non-Riemannian.

If Q = 0 the geometry is called metric.

If ℛ = 0 the geometry is called flat.

If S = 0 the geometry is called symmetric.

If Q = 0,S = 0 the geometry is called Riemannian.

If ℛ = 0,Q = 0,S = 0 geomtry is called Euclidian.
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Continuous body

∙ ℬ is a continuous body of class C 2 if
ℬ is a n- differential manifold, dim ℬ= n,
which is endowed with a structure by

(i) C a set of mappings, called configurations, i.e.
C := {� : ℬ −→ �(ℬ) ∣ �(ℬ) ⊂ ℰ , n − differential manifold

� diffeomorphism of class C 2,
preserving orrientation.}

(ii) m a measure on ℬ, induced by the smooth density functions
�� : �(ℬ) −→ R>0, associated with any fixed configuration
� ∈ C, i.e.

m(P) := m�(�(P)) =

∫
�(P)

��(X)dV�. (1)

m(P) is called the mass of the part P ⊂ ℬ.
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Continuous body

Configurations and motion

F(X , t) = ∇�(X , t)

(∇�)v :=
∂�i

∂xk
vkei

F�(X , t) = ∇��(�(X ), t)

(∇2�)v :=
∂2�i

∂xk∂xj
v jvkei
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Composition rule for second order deformations
Plastic connection

Ax. (∃) Second order plastic deformation

∀ �motion of the body ℬ ∀X, ∀t ∃ (Fp,
(p)

Γ )

Fp− an invertible second order tensor, i.e. Fp : TX → VK, called
plastic distorsion,
where TX− tangent space at X, VK− a vector space,

(p)

Γ − third order field, Γp : TX −→ Lin(TX, TX), called plastic
connection,
with non-zeo torsion

(Sku)v = (
(p)

Γ k u)v − (
(p)

Γ k v)u ∀u, v. (2)

Calculus rule:∇KF := (∇kF)(Fp)−1. (3)
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Composition rule for second order deformations
Plastic connection

The composition rule of second order gradients

is reformulated for second order deformations

(F,Γ) := (Fe ,
(e)

Γ K) ∘ (Fp,
(p)

Γ k), ⇐⇒

F = FeFp, {F = ∇�}

multiplicative decomposition

Γ = Fp
(e)

Γ K [(Fp)−1, (Fp)−1]+
(p)

Γ k {= F−1∇F}

composition rule of the connections.

(4)

Notation:((Γ[Fp,Fp])u)v = (Γ(Fpu))Fpv. (5)
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Sanda Cleja-Ţigoiu Continuum model of lattice defects in finite elasto-plasticity



Introduction
Second order deformations

Lattice defects
Balance Equations

Thermomechanics restrictions

Composition rule for second order deformations
Plastic connection

Plastic connection in K

Ax. The plastic connection has non-metric property with respect
to the appropriate plastic metric tensor cp,
(1) there exists Qd

K a third order tensor, such that

Qd
Kũ = cp

(p)

Γ K ũ + (
(p)

Γ K ũ)Tcp − (∇K cp)ũ,

for cp = (Fp)−T (Fp)−1 the metric tensor in K.
(6)

(2) Qd
Kũ ∈ Sym, ∀ ũ ∈ V.

Qd
K is a measure of the non-metricity.
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Composition rule for second order deformations
Plastic connection

Theorem

The plastic connection with respect to K is a (1,2)- third order
field, represented under the form

cp
(p)

Γ K= cp
(p)

AK +
1

2
Qd
K + ΛK × I,

where
(p)

AK:= Fp(∇K(Fp)−1), Bilby’s type connection

Qd
K(ũ) ∈ Sym, ∀ ũ ∈ VK, non-metricity measure.

The third order field ΛK × I, with ΛK a second order tensor field-
the disclination tensor, is defined for any vectors ũ, ṽ, by

((ΛK × I)ũ)ṽ = (ΛKũ)× ṽ,
(ΛK × I)ũ = ΛKũ× I ∈ Skew .

(7)
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Composition rule for second order deformations
Plastic connection

Let us remark that Bilby’s type connection
(p)

AK is related to
(p)

A k

by the plastic distorsion, as it follows

(p)

AK= −FpAp
k [(Fp)−1, (Fp)−1] = 0,

with
(p)

A k := (Fp)−1∇kFp.

(8)
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1 The dislocations are characterized by the Cartan torsion or the
non-vanishing torsion tensor S;

2 The disclinations are characterized by a non-vanishing
curature ℛ.

3 The extra-matter or vacancy are characterized by measures of
non-metricity Q.
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Torsion of the plastic connection in K

Let us introduce
(p)

Γ̄ K:= cp
(p)

Γ K a (0,3)-tensor, in K

Definition

The Cartan torsion SK, as a third order tensor, is given by

(Sp
Kũ)ṽ = (

(p)

Γ K ũ)ṽ − (
(p)

Γ K ṽ)ũ (9)

The definition leads to the expression (written ∀ ũ, ṽ)

((S̄p
K)ũ)ṽ = (Fp)−T curlK(Fp)−1(u× v) +

1

2

(
(Qd
Kũ)ṽ − (Qd

Kṽ)ũ
)
+

+ΛKũ× ṽ − ΛKṽ × ũ, where S̄p
K = cpSp

K.
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Definition

The quasi-dislocation density (see Kröner, Anthony, de Wit) �Q is
a second order tensor

with �Q(ũ× ṽ) :=
1

2

(
(Qd
Kũ)ṽ − (Qd

Kũ)ṽ
)
. (10)

This is defined in analogy with the dislocation density �

�(ũ× ṽ) = (Fp)−T curlK(Fp)−1(u× v), ∀ (ũ× ṽ). (11)

Apart from the dislocation density which enters the definition of
the Burgers vector, the quasi-dislocation density is a fictitious one.
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Burgers vector

in terms of plastic distorsion Fp

A0 surface with normal N bounded by C0 a closed curve in k

bK ≡ {
∫
CK

dxK} =

∫
C0

Fp dX =

=

∫
A0

(curl(Fp))NdA =

∫
AK

�KnKdAK,
(12)

�K ≡
1

detFp
(curl(Fp))(Fp)T Noll’s disloc.

bK ≃ curl(Fp)N area(A0)

(13)
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Non-local config.: non-zero torsion and zero curvature
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Non-local config.: non-zero torsion and non-zero curvature
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Definition

The second order torsion tensor N p
K is expressed by the dual

representation, which relates Cartan torsion SK and NK by

(Sp
Kũ)ṽ = N p

K(ũ× ṽ). (14)

Theorem

The second order torsion tensor N̄ p
K (where N̄ p

K = cpN p
K) is

expressed by

N̄ p
K = (Fp)−T curlK(Fp)−1 +�Q +

(
(tr Λ)I− (Λ)T

)
. (15)

The following defect fields have been introduced

� := (Fp)−T curlK(Fp)−1 dislocation density
�Q associated with non-metricity quasi-dislocation tensor

�Λ := tr ΛI− (Λ)T︸ ︷︷ ︸ disclination density.
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Disclination densities associated with non-metricity

in K
Definition

curlQd
K (ũ× ṽ) = ((∇K Qd

K)ũ)ṽ − ((∇K Qd
K)ṽ)ũ. (16)

Definition

The quasi- plastic strain HQ
K is introduced through

∃ HQ
K ∈ Sym such that Qd

K = ∇K Hd
K ⇐⇒

curlQd
K = 0

(17)

the expression for the quasi-dislocation in terms of the
quasi-plastic strain Hd

K

�Q(ũ× ṽ) :=
1

2

(
(Qd
Kũ)ṽ − (Qd

Kṽ)ũ
)
≡ curlHd

K(ũ× ṽ),

thus �Q ≡ curlHd
K if curlQd

K = 0.
(18)
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The name of quasi-plastic strain for Hd
K is justified through

∇K (cp + Hd
K)ũ = cp

(p)

Γ K ũ + (
(p)

Γ K ũ)Tcp

for cp = (Fp)−T (Fp)−1 the metric tensor in K.
(19)

Remark. The covariant derivative of the metric tensor has to be
corrected by the quasi-plastic tensor, which is only symmetric,
apart from the the plastic metric tensor which is symmetric and
positive definite tensor.

cp
(p)

AK ũ + (
(p)

AK ũ)Tcp − (∇Kcp)ũ, (20)

i.e. Bilby’s connection AK has metric property relative to cp.
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Definition

The Riemann curvature tensor ℛ is defined, in a coordinate
system, for any u, v, by

(ℛu)v = ((∇Γ)u)v − ((∇Γv)u + (Γu)Γv − (Γv)Γu. (21)

ℛp
K denotes the curvature tensor associated with the plastic

connection relative to the configuration K.
The non-metricity tensor Qd

K influences the Riemann curvature

if curlQd
K ∕= 0 then

1

2
curlQd

K(ũ× ṽ) =

= −{cp(ℛp
Kũ)ṽ}s −

[
{(QKũ)

(p)

Γ̄ K ṽ}s − {(QKṽ)
(p)

Γ̄ K ũ}s ]

Sanda Cleja-Ţigoiu Continuum model of lattice defects in finite elasto-plasticity



Introduction
Second order deformations

Lattice defects
Balance Equations

Thermomechanics restrictions

The disclination curvature tensor rΛ
K

The expression of the curvature tensor that belongs to Λ

(ℛ̄Λ
Kũ)ṽ := cp(ℛΛ

Kũ)ṽ = (∇K (Λ × I)ũ)ṽ − (∇K (Λ × I)ṽ)ũ+

+(ΛK × I)ũ(ΛK × I)ṽ − (ΛK × I)ṽ(ΛK × I)ũ,

⇐⇒ (ℛ̄Λ
Kũ)ṽ = (curlK ΛK)(ũ× ṽ) + (Adj ΛK)T (ũ× ṽ) ∈ Skew . (22)

Adjoint of Λ, denoted Adj(Λ), is defined, as a second order tensor,
by (

Λũ,Λṽ, w̃
)

:=
(
ũ, ṽ, (Adj Λ)w̃

)
, ∀ ũ, ṽ, w̃. (23)
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There exists a second order tensor rΛ
K, such that

rΛ
K = curlK ΛK + (Adj ΛK)T ,

where rΛ
K(ũ× ṽ) = (ℛ̄Λ

Kũ)ṽ,
(24)

which is a measure of the Riemannian curvature.
In this case the lattice defect, the disclination ΛK, leads to

disclination density �Λ := (tr Λ)I− (Λ)T ,

a non- zero curvature, which is characterized by the curvature
second order tensor rΛ

K.
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Macro balance equations

1 balance of the linear momentum∫
�(P,t)

�adV =

∫
�(P,t)

� bdV +

∫
∂�(P,t)

tndA. (25)

2 angular momentum∫
�(P,t)

r ∧ �adV =

∫
�(P,t)

r ∧ � bdV +

∫
∂�(P,t)

r ∧ t(n)dA+

+

∫
�(P,t)

� BmdV +

∫
∂�(P,t)

M(n)dA,

(26)

Definition:
r ∧ a ∈ Skew , (r ∧ a)w = (r × a)×w, ∀ r, a,w ∈ V.
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local balance law for linear momentum

div T + �b = � a, (27)

∙ Cauchy stress T, generally non-symmetric,
∙ third order tensor �− macro momentum M(n) = �n.∫

�(P,t)
r ∧ divTdV =

∫
∂�(P,t)

r ∧ t (n)dA+

+

∫
�(P,t)

(div �+ � Bm)dV .
(28)

local balance law for angular momentum∫
�(P,t)

(−2Ta + div �+ � Bm)dV = 0. (29)
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local balance equations for the linear and angular momentum

div T + �b = �a,

−2Ta = div �+ �Bm, −2Ta = T∗.
(30)

the balance equations

div
(
Ts − 1

2
{div �}a

)
+ �b = �a

with the compatibility condition {div �}s + �Bm = 0,

(31)

when the body momentum is symmetric, i.e. Bm ∈ Sym.

Sanda Cleja-Ţigoiu Continuum model of lattice defects in finite elasto-plasticity



Introduction
Second order deformations

Lattice defects
Balance Equations

Thermomechanics restrictions

local balance equations for the linear and angular momentum

div T + �b = �a,

−2Ta = div �+ �Bm, −2Ta = T∗.
(30)

the balance equations

div
(
Ts − 1

2
{div �}a

)
+ �b = �a

with the compatibility condition {div �}s + �Bm = 0,

(31)

when the body momentum is symmetric, i.e. Bm ∈ Sym.
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Balance equations for micro forces

1 The local micro balance equation involving plastic micro forces

Υp
K = div (�p

K − �K) + �̃Bp
m, in K(P, t), (32)

2 The micro balance equation for micro forces associated with
the disclination

Υ� − divK �
� = 0,

ΥQ
K − div �Q

K = 0 (33)

Here �̃B� is mass density of the couple body force, Υ� are
micro stress and �� are micro momentum associated with the
disclinations.
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Free energy density

Ax. If disclinations and extra-matter defects are considered, then
there exists a free density energy function  , represented in K by

 =  K(Ce ,
(e)

AK, (Fp)−1,
(p)

AK,HQ ,∇KHQ ,ΛK,∇KΛK) (34)

as a function dependent on

the second order elastic deformation (Ce ,
(e)

AK)

the plastic measure of deformation ((Fp)−1,
(p)

AK)

the quasi-plastic strain HQ ∈ Sym and its gradient

the disclination variable ΛK and its gradient.
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Imbalanced free energy

Ax. The virtual internal power in K

virt(Pint)K =
1

�
(T + T∗) ⋅ L̃e +

1

�K
�K ⋅ virtℒLp [

(e)

AK]+

+
1

�K
Υp
K ⋅ L̃

p +
1

�K
�p
K ⋅ ∇KL̃p +

1

�K
Υ�
K ⋅ (�Λ)+

+
1

�K
�Λ
K ⋅ ∇K�Λ +

1

�K
�Q
K ⋅ ∇K�H

Q +
1

�K
ΥQ
K ⋅ �H

Q .

Ax. The elasto-plastic behavior of the material is restricted to
satisfy in K the imbalanced free energy condition

− ̇K + (Pint)K ≥ 0 for any virtual (isothermic) processes. (35)
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Discilination only is associated with dislocation mechanism

The free energy in the reference configuration when the
disclination density Λ̃ ≡ ΛK is involved

 =  (C,Γ,Fp,
(p)

A ,Λ,∇Λ) ≡  K(Ce ,
(e)

AK, (Fp)−1,
(p)

AK, Λ̃,∇KΛ̃).

Restrictions imposed by the imbalanced free energy to the
elastic type constitutive functions are

1

�
{T}s = 2F(∂C )FT ,

1

�0
�0 = ∂Γ .

Sanda Cleja-Ţigoiu Continuum model of lattice defects in finite elasto-plasticity



Introduction
Second order deformations

Lattice defects
Balance Equations

Thermomechanics restrictions

Viscoplastic type constitutive equations for micro forces

contain:
1 a dissipative part
2 a non-dissipative part, which is derived from the free energy,

the so-called energetic micro forces,

The micro forces assocciated with plastic mechanism being
represented through

1

�0
(Σ0 −Σ0

p) + (Fp)T∂Fp +
(p)

A ⊙
( 1

�0
(�0 − �0

p) + ∂(p)

A
 
)
−

−
( 1

�0
(�0 − �0

p) + ∂(p)

A
 
)

r⊙
(p)

A= �1 lp,

1

�0
(�0 − �0

p)− ∂(p)

A
 = �2 ∇lp,

(36)
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1
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(Σ0 −Σ0

p) + (Fp)T∂Fp +
(p)

A ⊙
( 1

�0
(�0 − �0

p) + ∂(p)

A
 
)
−

−
( 1

�0
(�0 − �0

p) + ∂(p)

A
 
)
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Viscoplastic type constitutive equations for micro forces

The micro forces assocciated with disclinations are characterized by

1

�0
�0

� − ∂∇Λ  = �4 ∇Λ̇,

( 1

�0
Σ0

� − ∂Λ  
)

+
( (p)

A ⊙
1

�0
��0
)
−

−
( 1

�0
��0 r⊙

(p)

A
)
− 1

�0
��0
(
tr(2)(

(p)

A )
)

= �3 Λ̇.

(37)

special case
1

�0
�0

� − ∂∇Λ  = 0
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Shear plastic distortion as a source of disclination

1 If the plastic distortion Fp corresponds to a simple shear in the
slip system s,m, with � be the direction of the dislocation line

Fp = I + 
s⊗m, s ⊥ m,

∇Fp = s⊗m⊗∇
, Jp := det(Fp) = 1,
(38)

2 The dislocation density tensor can be represented in terms of
edge and screw dislocations

� := �⊥b⊗ � + �⊙b⊗ b, b− Burgers vector

where b := e1 = s, � = e2, e3 := m.
(39)

3 the Bilby’s type plastic connection is considered

Ap := (Fp)−1∇Fp = e1 ⊗ e3 ⊗∇
, ∇
 =
∂


∂x1
e1 +

∂


∂x2
e2.

then solve the problem: Find the disclination tensor Λ,Sanda Cleja-Ţigoiu Continuum model of lattice defects in finite elasto-plasticity
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Λ represented in the specific form

Λ := �! ⊗ �,

!− Frank vector
�− the tangent vector line for the disclination,

to be solution of the micro balance equation for the
disclination in k

Jp Υ� = div(Jp ��(Fp)−T ) + �0B�, (40)

Jp ��(Fp)−T defines a micro momentum associated with the
disclination in k,

with the appropriate boundary conditions on ∂K(P, t),

and satisfying the appropriate evolution equation.
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Theorem

1. Under the hypothesis that (s ⋅ !)(� ⋅m) is not vanishing, then
the evolution equation for the density of disclination is given by

�3�̇ + �2�
2
2Δ� = 0, (41)

while the compatibility condition expressed through the
orthogonality condition

∇
 ⋅ ∇� = 0. (42)

2. The result remains still valuable if either (s ⋅ !) = 0 or
(� ⋅m) = 0.
3. If both (s ⋅ !) = 0, (� ⋅m) = 0, then (41) holds, without any
restriction relative to plastic shear 
.
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Conclusions

We developed a general mathematical framework, able to
cover a large range of second order plasticity,

based on anholonomic configuration,

taking into account the presence of the inhomogeneities,
which describe lattice defects

such as continuously distributed dislocation, disclinations, and
extra-matter.

Dislocations can be represented by the curl of the plastic
distorsion, disclinations are characterized by a second order
tensor viewed as a measure of non-zero curvature and being
different from the Riemannian one, while the extra-matter can
be related to quasi-plastic strain, as a measure of
non-metricity.
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